MECHANICS OF SPEED

Sprinting

RATIONALE: Coaching to a Model

- SIMILARITY BETWEEN BIOMECHANICAL EFFICIENCIES
- LAWS OF MOTION AND MECHANICS APPLY TO <u>EVERYONE</u>
- MECHANICAL PRINCIPLES PRODUCE A MODEL
- INDIVIDUALS WILL HAVE SOME UNIQUENESS
- MECHANICS OF SPEED CANNOT BE COMPROMISED

OUR GOAL

• OUR GOAL IS TO MINIMIZE DEVIATION FROM THE STANDARD ESTABLISHED THROUGH SOUND SCIENTIFIC PRINCIPLES OF TRAINING.

PHYSICS FUN-DAMENTELS

WHAT IS FORCE?

- FORCE IS A VECTOR QUANTITY
- RESULTS FROM BOTH

MAGNITUDE AND DIRECTION

- VERTICAL FORCES
- PUSHING MECHANICS

"Vertical Force Production

is the key component of top-end and that in turn influences the ability to maintain a slight increase in stride length and stride frequency" —Dan Pfaff

"To go faster, you need more

force. The more force you apply, the higher you will rise off the ground." — Charlie Francis

APPLICATION OF FORCES

• PAY ME NOW OR PAY ME LATER

- Magnitude and Direction of forces applied properly during the initial stages of a race will inherently affect posture, stability, and force production in later stages of the race.
- Gross postural and mechanical inefficiencies early will lead to both accelerative and distributive issues later in the race.

CONCEPT OF STIFFNESS

- REFERS TO THE ABILITY OF
 THE LEG TO ACT LIKE A SPRING
- MOMENTUM IS DEVELOPED
 DURING ACCELERATION
- BODY WILL MOVE AT SAME
 RATE UNLESS ACTED UPON BY
 UNBALANCED FORCES
- TWO EXTERNAL FORCES WILL
 CAUSE DECELERATION
- LEG STIFFNESS INCREASES
 VERTICAL IMPULSE, SHORTENS
 GROUND CONTACT TIMES, AND
 INCREASES ELASTIC RETURN

Acceleration: The Start Looks like? • BIG SPLIT OF ARMS AND LEGS

- FORWARD LEAN FROM ANKLE
- POSTURAL ALIGNMENT FROM HEAD THROUGH SPINE
 TRIPLE EXTENSION
- LOW HEAL RECOVERY
- GRADUAL PROGRESSION OF BODY ANGLES
- LONG GROUND CONTACT TIMES
- ACUTE ANGLES OF THE SHIN

Acceleration: The Start Cues

- Big Push, Big Split
- Knees to Chest
- Stay on Front Pedal
- Push off both feet
- Feel feet behind you
- Push, Push, Push
- Step Over the Ankle
- Push down to Stand Up
- Push yourself up

www.englandathletics.org

THE ACCELERATION PROCESS

Tracing Common Faults: Result-Cause Relationships

- Stepping Out
- Popping Up
- Lateral Deviation
- Bend at waist instead of entire body lean
- Impatience in drive mechanics
- Incorrect start position
- •Any others?

Synthesis

- 2 point
- Rolling
- 3 point
- 4 point
- Blocks

Synthesis

Transition: Looks Like?

- Progression of body angles to upright
- Posture preserved from accelerative posture
- Gradual changes in limb movement magnitude
- Progressively higher heel recovery during
 - swing phase
- Posting
- Stiffness conserved

Transition: Cues

- Push up to post
- Push yourself tall
- Cheek to cheek
- Step over ankle
- Step over the calf
- Step over the heel

MAX VELOCITY: LOOKS LIKE?

- PUSHING KINETICS
- UPRIGHT POSTURE (POSTING)
- DYNAMIC ARM SWING
- OCCILATION OF THE SHOULDERS
- HIGH KNEE RECOVERY
- FRONT SIDE DOMINANCE
- RELAXATION IN FACE, SHOULDERS, HANDS
- FOOT CONTACT UNDER HIPS
- VERTICAL SHIN ANGLE AT GROUND CONTACT
- FOOT CONTACT UNDER HIPS
- PRE-ACTIVATION PRIOR TO GROUND CONTACT
- NEUTRAL ALIGNMENT OF HEAD, NECK, SPINE,

PELVIS

MAX VELOCITY: CUES

- Slam elbows down
- Step over the knee
- Feel everything in front
- Run tall and bounce
- Push up...or...Push Down
- Feel the feet under you
- Post Up, Stand Tall

Maximal Velocity Mechanics

